Last updated at May 29, 2018 by Teachoo

Transcript

Ex 3.3, 8 For the matrix A = [■8(1&5@6&7)] , verify that (i) (A + A’) is a symmetric matrix A = [■8(1&5@6&7)] A’ = [■8(1&6@5&7)] A + A’ = [■8(1&5@6&7)] + [■8(1&6@5&7)] = [■8(2&11@11&14)] ∴ (A + A’)’ = [■8(2&11@11&14)] Since (A + A’)’ = A + A’ Hence, (A + A’) is a symmetric matrix. Ex 3.3, 8 For the matrix A = [■8(1&5@6&7)] , verify that (ii) (A – A’) is a skew symmetric matrix A = [■8(1&5@6&7)] A’ = [■8(1&6@5&7)] A – A’ = [■8(1&5@6&7)] − [■8(1&6@5&7)] = [■8(0&−1@1&0)] (A – A’)’ = [■8(0&1@−1&0)] = − [■8(0&−1@1&0)] = − (A – A’) Since, (A – A’)’ = – (A – A’) Hence, (A – A’) is a skew-symmetric matrix.

Ex 3.3

Ex 3.3, 1

Ex 3.3, 2

Ex 3.3, 3

Ex 3.3, 4 Important

Ex 3.3, 5 (i)

Ex 3.3, 5 (ii)

Ex 3.3, 6 (i)

Ex 3.3, 6 (ii) Important

Ex 3.3, 7 (i)

Ex 3.3, 7 (ii) Important

Ex 3.3, 8 You are here

Ex 3.3, 9

Ex 3.3, 10 (i) Important

Ex 3.3, 10 (ii)

Ex 3.3, 10 (iii) Important

Ex 3.3, 10 (iv)

Ex 3.3, 11 (MCQ) Important

Ex 3.3, 12 (MCQ)

Chapter 3 Class 12 Matrices (Term 1)

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.